What is a Complete Street?

The National Complete Streets Coalition (www.completestreets.org) gives the following overview of a complete street:

Complete Streets are streets for everyone. They are designed and operated to enable safe access for all users. Pedestrians, bicyclists, motorists, and public transportation users of all ages and abilities are able to safely move along and across a complete street. Complete Streets make it easy to cross the street, walk to shops, and bicycle to work. They allow buses to run on time and make it safe for people to walk to and from train stations.

Complete Streets principles aim to provide a balanced transportation system for all modes of travel. They should be safe, comfortable, and convenient for anyone to travel by foot, bicycle, transit, and automobile regardless of age or ability. Taking a “Complete Streets” approach to public policy and planning for a community improves the quality of life for those living and working in the city. Complete Streets can offer many benefits in all types of communities, including:

Economic – Complete Streets can encourage economic growth by providing viable connections between places where people live and where they work, play, and shop.

Safety – Complete Streets reduce crashes for people using all modes of transportation.

Transportation – Complete Streets encourage walking and bicycling, increase travel choices, reduce congestion, and increase the overall capacity of the transportation network.

Health/Fitness – Complete Streets create an environment where people can more easily meet their recommended activity levels. Physical activity and a sense of independence are particularly important for children.

Air Quality – Complete Streets allow people to replace car trips with trips that do not generate carbon dioxide emissions.

In Complete Street design practice, consideration is given to the entire street: the land use context around the street, the roadside realm including the sidewalk and furnishing areas, and the traveled way.

Hillsborough Street in Raleigh, NC. Photo courtesy of Payton Chung. Example of a street redesigned using Complete Street principles.

Photo rendering of possible Complete Street style redesign of Cary Street at Belmont Avenue in Carytown. Note the improved crosswalks and the curb extension for the bus stop that includes a bus shelter.
The cross sections below represent ideas to help you consider the trade-offs of different ways to make space for users and vehicles on the street. Please use the dots provided to indicate your preferred cross section or work with the staff to design your own!

Pros: Moves vehicular traffic well, on-street parking on both sides, parking lane is wide enough for peak hour use as travel lane, good sidewalk width.

Cons: Easy for vehicles to speed, one-way system can be confusing, no dedicated space for bikes, outside lane too narrow for buses.

Pros: On-street parking on both sides, slower traffic movement.

Cons: Higher volume streets could see severe congestion, parking lane not wide enough for peak hour use as travel lane, no dedicated space for bikes, outside lane too narrow for buses.

Pros: Slower traffic movement, dedicated space for bikes, better sidewalk width.

Cons: No on-street parking, conflicts for buses and bikes at bus stops.

Pros: Dedicated transit way with no delays from vehicular congestion, very wide sidewalk width, bikes could share transit lanes.

Cons: No on-street parking, no dedicated space for bikes.

Pros: Slower traffic speeds, dedicated space for buses, good sidewalk width.

Cons: No on-street parking, no dedicated space for bikes.

Pros: Moves vehicular traffic well, on-street parking on one side, dedicated space for bikes, good sidewalk width.

Cons: Could be confusing to bikers and drivers, on-street parking on one side only, parking lane not wide enough for peak hour use as travel lane.
Draw your own street

Below is a blank cross section of Franklin Street between 5th and 6th Streets. This section of Franklin is representative of the width and scale of many downtown streets. You can draw a cross section that fits your vision for transportation in Richmond but it has to fit between the existing buildings.

You can draw with a pen or use the cut outs provided to create your own cross section. The cut outs represent typical width for various street features. Some guidance for different areas of the street:

- **Sidewalk** (Throughway Zone) is the space available for pedestrians to walk and the typical minimum for a downtown area is 6 feet.
- **Sidewalk** (Furnishing Zone) is the space between the Throughway Zone and the curb for trees, benches, and other street furniture and the typical minimum width in a downtown area is 4 feet.
- **Bike Lanes** are typically 4-5 feet wide, exclusive of any gutter (which is typically 1-2 feet wide).
- **Parking Lanes** are typically 8-10 feet wide. Parking lanes narrower than 10 feet cannot be used as peak hour travel lanes and pose problems on the right side of the street for bus stops as buses will tend to encroach on adjacent lanes while stopped.
- **Travel lanes** are typically 10-12 feet wide. Travel lanes less than 11 feet wide pose problems for transit as most buses require more space on the road to avoid encroaching on adjacent lanes.